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a b s t r a c t

To develop constitutive models to represent the thermomechanically chemically coupled behaviour of
curing resins, vulcanizing elastomers or melting and crystallizing polymers the technique of DSC is
extremely helpful. In the present study, the method of TMDSC is interpreted and evaluated in the con-
text of thermodynamics with internal state variables. The balance equation of energy and the dissipation
principle in the form of the Clausius–Duhem inequality form the theoretical basis of our study. Since the
pressure and the temperature are the external variables in DSC, the specific Gibbs free energy is used
MDSC
hermodynamics
requency-dependent heat capacity
nternal variables
ibbs free energy

as thermodynamic potential. It depends on temperature, stress and a set of internal state variables to
represent the microstructure of the material on a phenomenological basis. The temperature- and inter-
nal variable-induced changes in the Gibbs free energy are approximated by a Taylor series up to second
order terms. As a substantial result of this work, closed-form expressions for the dynamic calorimetric
response due to harmonic temperature perturbations and the frequency-dependent complex heat capac-
ity are derived. The theory allows a physical interpretation of the complex heat capacity and its underlying

ordan
phenomena and is in acc

. Introduction

Differential scanning calorimetry, usually abbreviated with the
cronym DSC, is a well-established experimental technique. It is
requently applied to analyse temperature-dependent changes in
he specific enthalpy of materials or to study the kinetics of chem-
cal reactions (see e.g., refs. [23,24]). Changes in the enthalpy come
o light, on the one hand, by the heat capacity of the material and,
n the other hand, by strain- or temperature-driven exo- or endo-
hermal changes in the microstructure like crystallization, phase
ransitions or chemical reactions (e.g., ref. [15]). These changes can
e reversible or irreversible, rate-dependent or rate-independent.

n the industry, the DSC technique is often applied to compare the
uality of materials. For more information about DSC and its tech-
ical realisation we refer the reader to the comprehensive textbook
f Höhne et al. [10].

In conventional DSC investigations, constant or linear time-
ependent temperature histories are prescribed and in tempera-

ure-modulated differential scanning calorimetry, abbreviated as
MDSC, sinusoidal temperature changes with small amplitudes
re superimposed (see e.g., refs. [2,4,6,11,14,18,22,25,26,29]). In the,
ecently developed, technique of general temperature-modulated

∗ Corresponding author. Tel.: +49 89 60042494; fax: +49 89 60042386.
E-mail address: alexander.lion@unibw.de (A. Lion).

040-6031/$ – see front matter © 2009 Elsevier B.V. All rights reserved.
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ce with experimental observations from literature.
© 2009 Elsevier B.V. All rights reserved.

differential scanning calorimetry (GTMDSC) an arbitrary periodic
temperature signal with small amplitude is added to the constant
or linearly changing base temperature (cf. [6,17]).

To interpret the experimental data of conventional DSC analy-
ses there is a huge amount of technical literature, but to interpret
frequency-dependent TMDSC measurements there are still open
questions and thus many recent publications. For example in ref.
[27] the influence of temperature-induced strains and the relax-
ation of the resulting stresses on the frequency-dependent heat
capacity of highly viscous polymer liquids is studied with regard
to the experimental technique used in ref. [1]. Physically, the
frequency dependence of the specific heat can be attributed to
temperature-induced changes in the microstructure of the mate-
rial (see e.g., refs. [29,30]). Several authors argue with the linear
or non-linear response theory (see e.g., refs. [17,20,21]) which is
rather similar to the theory of linear viscoelasticity in the time- or
the frequency-domain. This approach leads in a quite natural way
to the concept of a complex heat capacity with real and imaginary
parts. An alternative concept which is based on an order parameter
is given in ref. [13]. A physically based approach in order to interpret
TMDSC data which is based on non-equilibrium thermodynamics
is developed in the excellent and comprehensive review article [7]

(see also ref. [8]). An interesting interpretation of the imaginary
part of the heat capacity in terms of temperature-heat ellipses is
provided in ref. [12]. Many authors state, that the physical meaning
of the complex heat capacity is still unclear and a subject of discus-
sion. Other authors study or model the experimental procedure of

http://www.sciencedirect.com/science/journal/00406031
http://www.elsevier.com/locate/tca
mailto:alexander.lion@unibw.de
dx.doi.org/10.1016/j.tca.2009.02.016
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Nomenclature

a, b, cp0 scalar material parameters of the approximation of
the Gibbs free energy

A--
material parameter matrix of the evolution equa-
tions for the internal variables

c-, e- material parameter vectors of the approximation of
the Gibbs free energy

d--
material parameter matrix of the approximation of
the Gibbs free energy

div(·) divergence operator: div(�q) = ∂q1/∂x1 + ∂q2/∂x2 +
∂q3/∂x3

e, h, s specific internal energy, enthalpy and entropy per
unit mass

exp(X--
) matrix exponential function: exp(X--

) =
∞∑
k=0

X--
k/k!

fk (· · ·) right-hand side of the differential equation for the
internal state variable ˛k

f
-

column vector of the functions fk: f
-

= (f1, . . . , fn)T

g0, s0 Gibbs free energy and entropy belonging to the ther-
modynamic equilibrium

grad(·) gradient operator: grad(�) = (∂�/∂x1)�e1 +
(∂�/∂x2)�e2 + (∂�/∂x3)�e3

�m,�V, � mass, volume and mass density of the sample
Pref, Pmat power absorbed by the reference tin and the sample

tin
PDSC power absorbed by the sample
�q, r heat flux vector and volume-distributed heat supply

per unit mass
Re(z), Im(z) real and imaginary parts of a complex number z
�Scycl entropy production during a temperature cycle
t, ω time and angular frequency
T,E, Ṫ, Ė stress and strain tensor and their time derivatives
�x · �y scalar product between two physical vectors: �x · �y =

3∑
i=1

xiyi

x- · y
-

scalar product between two columns: x- · y
-

=
n∑
k=1

xkyk

X--
−1 inverse of the n × n matrix X--

: X--
X--

−1 = 1--
X·Y scalar product between two second order tensors:

X · Y =
3∑

i,k=1

XikYik

1--
unit matrix of dimension n × n

Greek symbols
ϑ(t), ϑ̂ time-dependent temperature perturbation and its

amplitude
˛k scalar internal state variable

-̨ column vector of the internal state variables: -̨ =
(˛1, . . . , ˛n)T

-̨ 0 internal variable column vector belonging to the
thermodynamic equilibrium

ı-(t) internal variable changes due to the temperature
perturbation

� thermodynamic temperature
�0 temperature of the thermodynamic equilibrium
 , g specific Helmholtz free energy and Gibbs free energy

per unit mass
�̂- (ω) frequency-dependent transfer function vector of the

internal variables ı-
ca Acta 490 (2009) 64–74 65

TMDSC (e.g., ref. [18]) and the measuring equipment in very detail
and solve the differential equation of heat conduction to calculate
the complex heat capacity of the material under consideration (cf.
[3]). The reason for the studies of this type is the elimination of the
heat conduction-induced phase shift between the specimen tem-
perature and the signal of the calorimeter. These technical effects
are not discussed in the current paper.

In the present essay, an interpretation of the method of
temperature-modulated differential scanning calorimetry in terms
of the theory of thermodynamics with internal state variables
is provided and an expression for the complex heat capacity is
derived. For details concerning the theory of thermodynamics with
internal state variables, we refer the reader to [5] and to the com-
prehensive textbook of Maugin [28]. Our investigation is mainly
motivated by the following facts:

• The development of constitutive equations for materials exhibit-
ing process-dependent and thermomechanically chemically
coupled material behaviour requires very detailed and compre-
hensive thermodynamical considerations.

• The physical meaning of the frequency-dependent heat capacity
with in-phase and out-of-phase parts is still unclear and, thus, a
subject of scientific research and discussion.

The paper is organized as follows: After a brief introduction to
DSC, the basic equations of continuum thermodynamics are for-
mulated and the required thermodynamic potentials are defined.
Based on the corresponding form of the Clausius–Duhem inequal-
ity, it is shown that the Gibbs free energy is the most adequate
potential for our investigations. Then, the dynamic calorimetric
equation is derived with the Gibbs free energy as thermody-
namic potential. The mass-specific Gibbs free energy depends on
the stress, the thermodynamic temperature and, in addition, on
a set of internal state variables. These variables are introduced
to represent temperature-dependent changes in the microstruc-
ture of the material and have fading memory properties. Finally,
a quadratic approximation of the Gibbs free energy is formulated
which is applicable in the vicinity of the thermodynamic state of
equilibrium. Based on this approach, expressions for the dynamic
calorimetric response and the complex heat capacity are derived
and studied. The essay closes with some simulations and a discus-
sion.

1.1. Measuring principle of DSC

Since the measuring principle of DSC is known for many years
it is described only roughly in the present paper. For details, we
refer the reader to the comprehensive textbook [10]. In order to
carry out a DSC analysis, two identical metal tins are prepared: the
first tin contains the sample of the material to be studied and the
second tin, the reference tin, is empty or contains a neutral refer-
ence material. In order to achieve the greatest possible resolution
and accuracy, the reference material should have a heat capacity
as close as possible to the sample material. Then, both tins are
cooled or heated under constant pressure p = const. If the tins have
exactly the same heat capacity and the supplied heat fluxes are the
same, the temporal evolution of the temperature is the same in
both systems. Otherwise, a temperature difference occurs which is
measured.

In the following consideration we assume, for simplification,

that the reference tin is empty and the supplied heat fluxes are con-
trolled in order to achieve the same temperature evolution in both
systems. In the reference system, the heat power Pref is absorbed
only by the tin; in the other system Pmat is absorbed or emitted by
the tin and the sample material. The difference between Pmat and
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6 A. Lion, B. Yagimli / Thermo

ref is the DSC-power absorbed or emitted by the sample material:

DSC = Pmat − Pref (1.1)

In order to relate the DSC-power PDSC to the rate of change in
he specific enthalpy, we start with the local balance equation of
nergy (for details, see ref. [9]):

ė = T · Ė − div(�q) + �r (1.2)

he scalars � and e are the mass density and the internal energy per
nit mass, �q is the heat flux vector, Ė the rate of the infinitesimal
train tensor, T is the Cauchy stress tensor and r is a volume-
istributed heat supply1. Relation (1.2) is the generalization of
he first law of thermodynamics in the form of de = dw + dq to
hree-dimensional space- and time-dependent field problems in
ontinuum mechanics.

Expressing the internal energy density e in terms of the specific
nthalpy per unit mass

h = e− 1
�

T · E ⇔ �ė = �ḣ+ Ṫ · E + T · Ė (1.3)

eads to the alternative formulation

ḣ = −E · Ṫ − div(�q) + �r. (1.4)

Now, we consider the relation �m =��V between the mass of
he material sample and its volume, assume a constant pressure or
tate of stress, i.e. Ṫ = 0, and no volume-distributed heat supply,
.e. r = 0. Integration of Eq. (1.4) over the volume of the sample and
ssuming homogeneous conditions yield

mḣ = −
∫
�V

div(�q)dV. (1.5)

pplication of the Gaussian theorem of integration∫
�V

div(�q)dV = −
∫
�A

�q · �ndA = PDSC (1.6)

hows that the right-hand side of Eq. (1.5) is equal to the heat power
DSC which is supplied to the material over its surface. The state-
ent on right-hand side of relation (1.6) is based on the assumption

hat the surface of the sample is directly connected to the heat bath,
.e. energy losses due to heat exchange with the environment are
eglected. Finally, we obtain

˙ = PDSC

�m
(1.7)

hich relates the calorimetric response PDSC to the rate of change
n the specific enthalpy of the material.

In continuum mechanics, the current state of a material is
escribed by the current values of a set of external and internal
tate variables. The internal state variables are quantities which are
eeded, in addition to the external variables, to characterize the cur-
ent state of the material. Examples are order parameters describing
rocess-induced changes in the microstructure of materials, for
xample amorphous–crystalline or liquid–solid phase transitions,
r variables describing the temporal evolution of chemical reac-
ions. If the external variables change, the internal variables can
lso change.

Assuming that the external state variables are the thermody-
amic temperature and the stress, the dependence of the internal
ariables ˛1,. . .,˛n on the histories of temperature and stress is
odelled by a system of ordinary differential equations in com-
ination with initial conditions (see e.g., refs. [9] or [28]):

˙ k(t) = fk(T, �,˛1, . . . , ˛n), ˛k(0) = ˛k0, k = 1, . . . , n (1.8)

1 X·Y is the scalar product between two second order tensors and div(�q) is the
ivergence of a vector field.
ca Acta 490 (2009) 64–74

Assuming the specific enthalpy h = h(T, �, ˛1,. . .,˛n) to depend
on the same variables yields

ḣ = ∂h

∂T
· Ṫ + ∂h

∂�
�̇ +

n∑
k=1

∂h

∂˛k
˙̨ k. (1.9)

The partial derivative cp =∂h/∂� is the heat capacity per unit mass
under constant stress. Taking the constant stress tensor T = −p1
with p = const into account, we obtain the fundamental equation
describing calorimetric responses:

∂h

∂�
(T, �,˛1, . . . , ˛n)�̇

+
n∑
k=1

∂h

∂˛k
(T, �,˛1, . . . , ˛n)fk(T, �,˛1, . . . , ˛n) = PDSC

�m
(1.10)

The first term in Eq. (1.10) is proportional to the time derivative
of the temperature and describes heat capacity-related enthalpy
changes. The second term can be attributed to enthalpy changes
which are driven by microstructural rearrangements, chemical
reactions or phase transitions. Since the sample temperature �(t)
is a prescribed function of time, the fundamental equation (1.10)
in combination with the differential equations (1.8) define a func-
tional of the entire temperature process (see e.g., ref. [16]):

PDSC(t)
�m

= �
s≥0

(�(t − s)) (1.11)

The properties of the functional � are determined by the process-
dependence of the internal variables ˛1,. . .,˛n with respect to the
temperature history. In case of a sinusoidal temperature excitation
with constant average and small amplitude, known as TMDSC, the
calorimetric response contains one term which is in phase with the
temperature and a second term that is in phase with the tempera-
ture rate. Based on this property, the idea of a complex heat capacity
can easily be motivated.

In fact, Eq. (1.10) is adequate for the physical interpretation
of DSC measurements. But to formulate a constitutive theory for
the complex heat capacity which is compatible with the second
law of thermodynamics, the specific enthalpy is an ill-suited ther-
modynamic potential. The reason for this deficiency is that the
temperature and the stress are not the canonical variables of the
specific enthalpy: their canonical variables are the specific entropy
s and the stress T. Thus in the following section, Eq. (1.10) is refor-
mulated with the Gibbs free energy as thermodynamic potential.
The canonical variables of this potential are the stress tensor T and
the thermodynamic temperature �.

2. Fundamentals

In addition to the internal energy e and the enthalpy h as spec-
ified in Eq. (1.3) there are two further thermodynamic potentials
which are frequently applied in continuum mechanics, thermo-
dynamics or physical chemistry. The Helmholtz free energy  is
defined by

 = e− �s ⇔ ė =  ̇ + �̇s+ �ṡ (2.1)

and the Gibbs free energy g by the relation

g = h− �s ⇔ ḣ = ġ + �̇s+ �ṡ . (2.2)

The scalar function s is the specific entropy per unit mass. On the

basis of Eqs. (2.1) and (2.2) in combination with Eqs. (1.2) and (1.4)
two further formulations of the first law of thermodynamics are
obtained:

� ̇ = T · Ė − �(�ṡ+ s�̇) − div(�q) + �r (2.3)
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(2.25)

˙
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ġ = −E · Ṫ − �(�ṡ+ s�̇) − div(�q) + �r (2.4)

In continuum mechanics, the second law of thermodynamics is
requently expressed in the form of the Clausius–Duhem inequality
hich states that the local entropy production 	 has to be non-
egative (see e.g., [9]). This relation is usually formulated with the
elmholtz free energy  as thermodynamic potential:

�	 = −� ̇ + T · Ė − �s�̇ − �q · grad�
�

≥ 0 (2.5)

ased on the definitions (1.3), (2.1) and (2.2) of the three other ther-
odynamic potentials, the following equivalent formulations of Eq.

2.5) are found:

�	 = −�ė+ T · Ė + ��ṡ− �q · grad�
�

≥ 0 (2.6)

�	 = −�ḣ− E · Ṫ + ��ṡ− �q · grad�
�

≥ 0 (2.7)

�	 = −�ġ − E · Ṫ − �s�̇ − �q · grad�
�

≥ 0 (2.8)

The Clausius–Duhem inequality, in one of the four aforemen-
ioned forms (2.5)–(2.8), has to be satisfied by any constitutive

odel for arbitrary thermomechanical processes. In the case of a
iven thermodynamic potential e, h,  or g the time derivatives of
tress or strain and temperature or entropy occur in the particu-
ar form of the Clausius–Duhem inequality. This special structure

otivates the following set of canonical independent variables of
he four thermodynamic potentials:

= e(E, s, ˛1, . . . , ˛n) (2.9)

= h(T, s, ˛1, . . . , ˛n) (2.10)

=  (E, �,˛1, . . . , ˛n) (2.11)

= g(T, �,˛1, . . . , ˛n) (2.12)

he internal variables˛1,. . .˛n are additionally introduced to repre-
ent the current state of the material if the corresponding external
ariables are not sufficient. They are determined by a system of
rdinary differential equations depending on the selected set of
xternal variables (E, s), (T, s), (E, �) or (T, �) and the current values
f the internal variables themselves:

˙ k(t) = fk(. . . , ˛1, . . . , ˛n) (2.13)

Other choices of independent variables of the thermodynamic
otentials are also possible, for example h = h(T, �, ˛1, . . ., ˛n)

nstead of h = h(T, s, ˛1, . . ., ˛n), but only in the case of Eqs.
2.9)–(2.12) two potential relations and a simple condition for the
ompatibility of the model with the second law of thermodynamics
re resulting. This is demonstrated for the Gibbs free energy in the
ollowing discussion.

Since the stress T and the temperature � are the external vari-
bles in calorimetric analyses the Gibbs free energy g = g(T, �, ˛1,
. ., ˛n) is the most appropriate thermodynamic potential for our
tudy. Calculating the time derivative of Eq. (2.12)

˙ = ∂g

∂T
· Ṫ + ∂g

∂�
�̇ +

n∑
k=1

∂g

∂˛k
˙̨ k (2.14)

nd inserting this into Eq. (2.8) leads to
−
(

E + �∂g
∂T

)
· Ṫ − �

(
s+ ∂g

∂�

)
�̇ − �

n∑
k=1

∂g

∂˛k
˙̨ k

− �q · grad�
�

≥ 0. (2.15)
ca Acta 490 (2009) 64–74 67

This inequality has to be satisfied for arbitrary numerical values of
the rates Ṫ and �̇ of the external variables. As a consequence, the
following potential relations for the strain tensor E and the entropy
density s are obtained:

E = −�∂g
∂T

(2.16)

s = −∂g
∂�

(2.17)

The residual inequality expresses the non-negativity of the local
entropy production and has to be satisfied by the constitutive equa-
tion for the heat flux vector �q and the evolution equations (2.13) for
the internal variables:

��	 = −�
n∑
k=1

∂g

∂˛k
˙̨ k − �q · grad�

�
≥ 0 (2.18)

With Eqs. (2.14), (2.16) and (2.17) the time-rate of the Gibbs free
energy can be written as2

�ġ = −E · Ṫ − �s�̇ + �
n∑
k=1

∂g

∂˛k
˙̨ k. (2.19)

Inserting this relation in combination with the potential relation
(2.17) for the specific entropy into the first law of thermodynamics
in the form of (2.4), we obtain

�

n∑
k=1

∂g

∂˛k
˙̨ k = �� d

dt

(
∂g

∂�

)
− div(�q) + �r (2.20)

or

�

n∑
k=1

∂g

∂˛k
˙̨ k = ��

(
∂ 2g

∂�∂T
· Ṫ + ∂ 2g

∂�2
�̇ +

n∑
k=1

∂ 2g

∂�∂˛k
˙̨ k

)

− div(�q) + �r. (2.21)

Rearranging the terms leads finally to

−�� ∂
2g

∂�2
�̇ + �

n∑
k=1

(
∂g

∂˛k
− � ∂2g

∂�∂˛k

)
˙̨ k

= �� ∂
2g

∂�∂T
· Ṫ − div(�q) + �r. (2.22)

To compare this result with the original formulation (1.10) we con-
sider the definition (2.2) in combination with the potential relation
(2.17) and obtain

h = g − � ∂g
∂�
. (2.23)

This expression leads to the interpretation of the factor −�∂2g/∂�2

in Eq. (2.22) as heat capacity at constant stress,

cP(T, �,˛1, . . . , ˛n) = ∂h

∂�
= −� ∂

2g

∂�2
, (2.24)

and to the following reformulation of the parenthesized term in Eq.
(2.22):

∂g ∂ 2g ∂
(

∂g
)

∂ ∂h
Assuming a constant state of stress, i.e. T = 0, and no
volume-distributed heat supply r = 0 and carrying out the same

2 If the partial derivatives of the Gibbs free energy are interpreted as chemical
potentials and the internal variables as phase fractions, the corresponding form of
the Gibbs-Duhem equation can be derived from Eq. (2.19).
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8 A. Lion, B. Yagimli / Thermo

rgumentation which led from Eq. (1.4) to Eq. (1.10), Eq. (2.22) can
e written as:

�
∂2g

∂�2
�̇ +

n∑
k=1

(
∂g

∂˛k
− � ∂2g

∂�∂˛k

)
fk = PDSC

�m
(2.26)

This is the fundamental calorimetric equation formulated with
he specific Gibbs free energy g(T, �, ˛1, . . ., ˛n) as thermodynamic
otential. It should be remarked that this result can be derived more
irectly from Eq. (1.10) by introducing the affinities

k = − ∂g

∂˛k
in combination with

∂g

∂˛k
= ∂h

∂˛k
− � ∂s

∂˛k
. (2.27)

he advantage of the formulation with the Gibbs free energy is
hat a sufficient condition (2.18) for the compatibility of the evo-
ution equations (1.8) with the second law of thermodynamics can
e specified.

For the considerations in the next section and the sake of clear-
ess we introduce an index-free notation. To this end, we define
olumn vectors

= (˛1, . . . , ˛n)T, f = (f1, . . . , fn)T, (2.28)

∂g

∂˛
=
(
∂g

∂˛1
, . . . ,

∂g

∂˛n

)T

(2.29)

n combination with a scalar product

∂g

∂˛
· ˙̨ =

n∑
k=1

∂g

∂˛k
˙̨ k. (2.30)

In order to distinguish between physical vectors like the heat
ux �q and the column vector of the internal variables, for example,
e introduced the notation˛ instead of �̨ . With these definitions in
ind, the set of equations (2.26), (1.8) and (2.18) can be rewritten

s follows:

Calorimetric equation:

−� ∂
2g

∂�2
�̇ +
(
∂g

∂˛
− � ∂

2g

∂�∂˛

)
· ˙̨ = PDSC

�m
(2.31)

Evolution of internal variables:

˙̨ = f (T, �, -̨ ) (2.32)

Thermodynamic compatibility:

��	 = −� ∂g
∂˛

· ˙̨ − �q · grad�
�

≥ 0 (2.33)

Comment: The second law of thermodynamics in the form of Eq.
2.33) states that the entropy production which is the sum of two
ontributions has to be non-negative for arbitrary thermomechan-
cal processes. If we consider that both the Gibbs free energy g and
he ˙̨ are independent on grad � and assume a special situation with
rad� = �0 then Eq. (2.33) leads to
�	int = −�∂g(T, �, -̨ )
∂˛

· ˙̨- ≥ 0. (2.34)

his consequence states, that the entropy production 	 int of the
nternal state variables alone, i.e. without temperature gradient,
as also to be non-negative. Taking Eq. (2.34) in combination with
q. (2.19) into account and assuming a process with �̇ = 0 and

˙ = 0 we obtain ġ ≤ 0. This demonstrates that the Gibbs free energy
pproaches a minimum in the thermodynamic state of equilibrium.
ca Acta 490 (2009) 64–74

3. Constitutive model

The constitutive model to be developed in this section is for-
mulated to represent the material behaviour in the vicinity of the
thermodynamic state of equilibrium. The thermodynamic state of
equilibrium corresponds to constant values of the external and
internal state variables. Its vicinity is defined by sufficiently small
changes in both the temperature � and the internal variables -̨ .
Changes in pressure or stress are not considered in our study.

To formulate the constitutive theory, we postulate that the equi-
librium state of the materials’ microstructure at constant stress
T = −p1 and temperature �0 is represented by a constant internal
variable vector ˛0. It depends on both stress and temperature and
is the equilibrium solution of the evolution equations (2.32):

0 = f (T, �0, -̨ 0) ⇔ -̨ 0 = ϕ(T, �0) (3.1)

The Gibbs free energy g0 belonging to this state of equilibrium is
given by the expression

g0 = g(T, �0, ˛0). (3.2)

Now, we prescribe a sufficiently small time-dependent tempera-
ture perturbation ϑ (t) such that the current temperature can be
expressed as

�(t) = �0 + ϑ(t) with |ϑ(t)| 	 �0. (3.3)

The temperature changeϑ (t) leads to time-dependent changes ı-(t)
in the internal variables:

˛(t) = ˛0 + ı(t) (3.4)

To model the resulting change in the Gibbs free energy g(T, �0 +
ϑ, -̨ 0 + ı-) we introduce its Taylor approximation up to the second
order:

g(T, �0 + ϑ, -̨ 0 + ı-) = g0 + aϑ + 1
2
bϑ2 + c · ı+ 1

2
(dı) · ı+ e · ıϑ

(3.5)

The cross-coupling term e · ıϑ in Eq. (3.5) between the changes in
the temperature perturbation and the internal variables has been
introduced quite formally, i.e. without physical motivation. But later
in this paper we demonstrate, that exactly this term is responsible
for the frequency dependence of the specific heat. In a different
notation Eq. (3.5) can be rewritten as

g(T, �0 + ϑ, -̨ 0 + ı-)

= g0+

⎡
⎢⎢⎣
c1
...
cn
a

⎤
⎥⎥⎦
⎡
⎢⎢⎣
ı1
...
ın
ϑ

⎤
⎥⎥⎦+1

2

⎡
⎢⎢⎣
ı1
...
ın
ϑ

⎤
⎥⎥⎦
⎡
⎢⎢⎣
d11 · · · d1n e1

...
. . .

...
...

dn1 · · · dnn en
e1 · · · en b

⎤
⎥⎥⎦
⎡
⎢⎢⎣
ı1
...
ın
ϑ

⎤
⎥⎥⎦ . (3.6)

The quantities c- and e- are column vectors of dimension n containing
material parameters, g0, a and b are scalar parameters and d--

is a
matrix containing n × n material constants. In general, the Taylor
coefficients g0, a, b, c-, d--

, e- depend on T and �0. Since the matrix in
Eq. (3.6) is the symmetric Hessian-matrix of g we conclude

d = d T . (3.7)

The assumption that the Gibbs free energy should grow when the
internal variables change from their equilibrium values ı-0 = 0- to
ı-(t) /= 0- leads to the positive definiteness of d--

:

ı- · (dı-)> 0 (3.8)

In this case, the inverse matrix

d−1 exists and has the property ı- · (d−1ı-)> 0. (3.9)
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To attribute the material constants of the specific Gibbs free
nergy (3.5) to physical material properties we consider Eq. (2.24)
nd calculate the specific heat:

P(ϑ, ı-) = −� ∂
2g

∂ϑ2
= −(�0 + ϑ)b = −b�0 − ϑ

�0
b�0 (3.10)

e recognize that cP depends on temperature, but not on the inter-
al variables. If the change in the temperature is zero we obtain
P(0, ı-) = −b�0 which motivates the following definition:

−b�0 =: cP0 ⇔ b = − cP0

�0
(3.11)

ased on this, Eq. (3.10) can be written as

P =
(

1 + ϑ

�0

)
cP0. (3.12)

ow, we consider Eq. (2.17) and calculate the specific entropy from
q. (3.5):

(ϑ, ı-) = − ∂g
∂ϑ

= −(a+ bϑ + e · ı) (3.13)

t depends on both the temperature perturbation and the changes
n the internal state variables. Interpreting the internal variables as
rder parameters or as quantities describing the current state of
he microstructure, the dependence of the entropy on ı- becomes
bvious. In the case of ϑ = 0 and ı- = 0- we have

(0,0-) = −a =: s0. (3.14)

This leads to the interpretation of the material constant −a as
he entropy s0 in the reference state at � = �0 and -̨ = -̨ 0.

To satisfy Eq. (2.33), the sum of the two contributions to the
ntropy production has to be non-negative. Since the Gibbs free
nergy and the rates of the internal variables are independent of
rad �, we concluded that the entropy production of the internal
ariables has to be non-negative. In order to formulate the evolution
quations for the internal variables such that Eq. (2.34) is satisfied,
e consider Eq. (3.5), calculate the affinities

∂g

∂ı
= −(c + dı+ eϑ) (3.15)

nd obtain:

�0	int = −∂g
∂ı

· ı̇ = −(c + dı+ eϑ) · ı̇. (3.16)

n order to guarantee −(∂g/∂ı) · ı̇ ≥ 0 for arbitrary thermomechan-
cal processes we define

˙ (t):= − A(dı+ eϑ) with ı(0) = 0- (3.17)

or the temporal evolution of the internal variables (cf. Eq. (2.32)).
o make sure that the temporal changes in the internal variables are
ero when the material is in its reference state at ϑ = 0 and ı- = 0-,
he parameter vector c- has to be zero. The n × n matrix A--

has to be
ositive definite such that the corresponding entropy production is
on-negative:

∂g

∂ı
· ı̇ = (dı+ eϑ) · (A(dı+ eϑ)) ≥ 0 (3.18)

he driving force for the changes in the internal variables is the
emperature perturbation such that the system (3.17) of linear dif-
erential equations has the following properties:

The general solution of Eq. (3.17) for arbitrary temperature per-

turbations is given by the following convolution integral, where
exp(. . .) is the matrix exponential function:

ı-(t) = −
∫ t

0

exp(−Ad(t − s))Ae-ϑ(s)ds (3.19)
ca Acta 490 (2009) 64–74 69

The internal variable vector ı- is a linear functional of the history
of the temperature perturbation with fading memory properties:
if an arbitrary temperature perturbation ϑ(s) is switched-off for
s ≥ t0, the internal variables relax to their initial values since Eq.
(3.19) leads for t ≥ t0 to lim

t→∞
ı-(t) = 0-.

• If the temperature perturbation is zero, then Eq. (3.19) leads to
ı(t) ≡ 0-, i.e. the internal variables do not evolve in this case. The
requirement of asymptotic stability of this solution demands the
matrix Ad to be positive definite:

ı- · (Ad)ı- > 0 ⇒ (Ad)−1 exists (3.20)

The reciprocal eigenvalues of the matrix Ad are the relaxation
times of the internal variables and can be interpreted as time con-
stants of the materials’ microstructure. The distinction, whether
a temperature change is slow or fast for a given material depends
on the ratio between the reciprocal eigenvalues of the matrix Ad
and the characteristic time constants of the temperature process.

• Assuming infinitely slow temperature perturbations, we are close
to equilibrium such that the rate terms ϑ̇ and ı̇- can be neglected
in the equations. Then, Eq. (3.17) leads to 0- = A--(dı+ eϑ) and

finally to ı = −(d−1e)ϑ, i.e. the changes in the internal variables
depend linearly on the temperature perturbation. The physical
interpretation is that the microstructure of the material follows
the temperature change in a reversible manner without any delay.
In this case, the entropy which is given by (3.13) or (3.24) changes
due to both the temperature variation and the variation in the
internal variables.

• In the case of infinitely fast temperature changes, the terms con-
taining ϑ and ı- can be neglected in comparison with the rate
terms. Then, Eq. (3.17) leads to ı̇- = 0- or with the initial condition
ı(0) = 0- to ı(t) ≡ 0-, i.e. the internal state variables are frozen. The
physical interpretation of this consequence is that the microstruc-
ture does not follow the temperature change. In this case, the
entropy (3.13) or (3.24) only changes due to the temperature
variation.

Using these results, the calorimetric equation corresponding to
Eq. (2.31) can easily be derived. To this end, the expression(
∂g

∂ı
− � ∂

2g

∂�∂ı

)
· ı̇ = −(dı− �0e) · (A(dı+ eϑ)) (3.21)

is expanded and written as(
∂g

∂ı
− � ∂

2g

∂�∂ı

)
· ı̇ = −ı · [(dAd)ı] − ı · [(dA)e]ϑ + �0e · (Ae)ϑ

+ �0e · [(Ad)ı]. (3.22)

After these reformulations and considerations we obtain the
final versions of the Gibbs free energy, the entropy, the heat capac-
ity, the evolution equations for the internal state variables and the
calorimetric equation:

Gibbs free energy:

g = g0 − s0ϑ − cP0

2�0
ϑ2 + 1

2
(dı) · ı+ e · ıϑ (3.23)

Entropy:

s = s0 + cP0 ϑ − e · ı (3.24)

�0

Heat capacity:

cP =
(

1 + ϑ

�0

)
cP0 (3.25)
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Evolution of internal variables:

ı̇ = −A(dı+ eϑ) (3.26)

DCR:

cP0ϑ̇ + �0(e · (Ae)ϑ + e · [(Ad)ı]) + cP0
ϑ

�0
ϑ̇ − ı · [(dAd)ı]

− ı · [(dA)e]ϑ = PDSC

�m
(3.27)

These equations define the theory which can be applied to rep-
esent the dynamic calorimetric response (DCR) of a given material
ue to a temperature perturbation in the vicinity of the thermody-
amic state of equilibrium. The material parameters are given by
he scalars g0, s0, cP0, the n-dimensional parameter column e-, the
ymmetric and positive definite n × n matrix d--

and the positive def-
nite n × n matrix A--

. As we see, the first three terms on the left-hand
ide of Eq. (3.27) depend linearly on ϑ, its time-rate or ı-. When a
armonic temperature excitation is prescribed, these terms oscil-

ate with the same frequency as the temperature and determine the
requency dependence of the specific heat. The three other terms
epend on products between ϑ, its time-rate or ı- and lead to a
ontribution to the dynamic calorimetric response which oscillates
ith the double frequency. If the material parameter vector e- is

ero, the cross-coupling term in the Gibbs free energy vanishes,
he contribution of the internal state variables to the entropy also
anishes, the internal variables remain zero and Eq. (3.27) reduces
o cP0ϑ̇ + (cP0/�0)ϑϑ̇ = PDSC/�m. The term containing the product
ϑ̇ is due to the temperature dependence of the heat capacity.

. Evaluation for harmonic temperature changes

To analyse the Eqs. (3.26) and (3.27) for harmonic temperature
hanges and to derive an expression for the complex heat capacity
e prescribe a temperature excitation in the form of

(t) = ϑ̂eiωt. (4.1)

The parameter ω is the angular frequency, i = √−1 the imagi-
ary unit and ϑ̂ the amplitude of the temperature excitation. Since
q. (3.26) is a system of linear differential equations, the stationary
esponse of the internal state variables can be represented as

= ı̂(ω)eiωt. (4.2)

he complex amplitudes ı̂(ω) of the internal variables describe the
agnitude and the phase and depend on the frequency of the tem-

erature process. Inserting Eqs. (4.1) and (4.2) into Eq. (3.26) leads
o the intermediate result

ωı̂ = −A(dı̂+ eϑ̂). (4.3)

ntroducing the n × n unit matrix 1--
and defining the frequency-

ependent transfer function

ˆ
- (ω) = −(iω1 + Ad)−1Ae (4.4)

e obtain the following relation for the amplitudes of the internal
ariables:

ˆ(ω) = �̂- (ω)ϑ̂ (4.5)

o calculate the dynamic calorimetric response we insert at first

qs. (4.1) and (4.2) into Eq. (3.27):

iωcP0ϑ̂e
iωt + iω ϑ̂

2

�0
cP0e

2iωt + �0(e · (Ae)ϑ̂eiωt + e · [(Ad)ı̂]eiωt) +

− ı̂ · [(dAd)ı̂]e2iωt − ı̂ · [(dA)e]ϑ̂e2iωt = PDSC

�m
(4.6)
ca Acta 490 (2009) 64–74

Replacing the internal state variable amplitudes ı̂(ω) by (4.5)
and reorganizing the terms we obtain the following intermediate
result:{
cP0 + �0

iω
(e · (Ae) + e · [Ad�̂- ])

}
iωϑ̂eiωt

+
{
iωcP0

�0
− �̂- · [dAd�̂- + dAe]

}
ϑ̂2e2iωt = PDSC

�m
. (4.7)

Multiplying the definition (4.4) of the transfer function �̂- (ω) with
the matrix (iω1 + Ad) and rearranging the terms, we obtain

A(e+ d�̂- (ω)) = −iω�̂- (ω) (4.8)

and after a short calculation the final expression for the dynamic
calorimetric response:

[cP0 − �0e · �̂- (ω)]iωϑ̂eiωt + iω
[
cP0

�0
+ �̂- (ω) · d�̂- (ω)

]
ϑ̂2e2iωt

= PDSC

�m
(4.9)

We see that there occur two frequencies in the dynamic calori-
metric response: one term oscillates with the frequency ω and the
other with its double. The 2ω-term is small because it is multiplied
with the square ϑ̂2 of the temperature amplitude. In the compre-
hensive article [18], higher-order terms in TMDSC responses as well
as their different reasons are analysed. Since the expression iωϑ̂eiωt

in Eq. (4.9) is the rate of the temperature, its coefficient can be
interpreted as a complex frequency-dependent heat capacity:

ĉP(ω) = cP0 − �0e · �̂- (ω) (4.10)

Taking Eq. (4.4) into account, Eq. (4.10) reads is in a more explicit
form

ĉP(ω) = cP0 + �0e · (iω1--
+ A--d--)−1A--

e. (4.11)

In addition to the constant cP0 which was introduced by Eqs. (3.11),
(3.23) or (3.25) a frequency-dependent term occurs which is pro-
portional to the transfer function of the internal state variables.
From a physical point of view, this contribution is determined
by temperature-induced dynamic changes in the microstructure
of the material. If the material parameter vector e- equals zero,
the cross-coupling term in the Gibbs free energy (3.23) vanishes
and the internal variable vector ı-, or the microstructure, remains
uninfluenced by the temperature perturbation (see Eqs. (3.26) and
(4.5) or (4.4)). In this case, we obtain from Eq. (4.11) the rela-
tion ĉP(ω) = cP0, i.e. the heat capacity is a real number and is
frequency-independent. In the case of e- /= 0-, the internal variables
vary with the same frequency as the temperature excitation but
with a frequency-dependent amplitude and phase. Since these
microstructural rearrangements absorb and release energy, the spe-
cific heat of the material is influenced (cf. [7,29,30]).

To compare these results with experimental observations from
literature (see refs. [1] or [19]) we evaluate Eq. (4.11) for low and
high frequencies.

4.1. Low-frequent behaviour

In order to investigate the low-frequent behaviour of the com-
plex heat capacity we take a look at Eq. (4.11), consider the positive
definiteness of the matrices A--

and d--
, set ω = 0 and obtain
ĉP(0) = cP0 + �0e · (A--
d--

)−1A--
e (4.12)

or

ĉP(0) = cP0 + �0e · (d--
−1e). (4.13)
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he additional term on the right-hand side of Eq. (4.13) is non-
egative because d--

and its inverse are positive definite matrices
see Eqs. (3.8) and (3.9)). In order to interpret this result, we calcu-
ate the low-frequent behaviour of the amplitudes of the internal
ariables. Relations (4.4) and (4.5) together with ω = 0 lead to

ˆ(0) = −d−1eϑ̂. (4.14)

which corresponds to the solution of Eq. (3.26) for infinitely
low processes. This result exhibits that the amplitude of the inter-
al state variable vector becomes constant and different from zero
hen the frequency of the dynamic temperature excitation is suf-
ciently small. In this case, the microstructure follows the dynamic
hanges in temperature.

.2. High-frequent behaviour

To study the high-frequent behaviour of the complex heat capac-
ty we reformulate Eq. (4.11) as

ˆP(ω) = cP0 + �0

iω
e ·
(

1--
+ 1
iω
A--
d--

)−1
A--
e. (4.15)

ince the assumption of high frequencies implies ||(1/iω)Ad|| 	 1
e apply the approximation

1 + 1
iω
Ad
)−1

≈ 1 − 1
iω
Ad (4.16)

hich leads to the intermediate result

ˆP(ω) = cP0 + �0

iω
e ·
(

1--
− 1
iω
A--
d--

)
A--
e. (4.17)

arrying out the limit transition ω→ ∞ we obtain

ˆP(∞) = cP0. (4.18)

n the case of high-frequent temperature processes, the complex
eat capacity is given by the material constant cP0. For the sake
f completeness, we also calculate the dynamic amplitudes of the
nternal variables. To this end, we factor out the term 1/iω in Eqs.
4.4) and (4.5):

ˆ(ω) = − 1
iω

(
1 + 1

iω
Ad
)−1

Aeϑ̂ (4.19)

pplication of the approximation (4.16) leads to

ˆ(ω) = − 1
iω

(
1 − 1

iω
Ad
)
Aeϑ̂ (4.20)

nd after the limit transition ω→ ∞ to

ˆ(∞) = 0-. (4.21)

n the case of high-frequent temperature changes, the internal state
ariables are frozen and do not change. The frequency of the tem-
erature process is too large.
.3. Interpretation of the imaginary part of the complex heat
apacity

In order to interpret the complex specific heat as done, for exam-
le, in refs. [12,29,30] we reformulate Eq. (4.11) using the identity

iω1--
+ A--d--)−1 = (iω1--

+ A--d--)−1(−iω1--
+ A--d--)−1(−iω1--

+ A--d--)

= (ω21--
+ (A--

d--
)2)

−1
(−iω1--

+ A--d--) (4.22)
ca Acta 490 (2009) 64–74 71

and obtain the additive split of ĉP(ω) the sum of real and imaginary
parts:

ĉP(ω) = Re(ĉP) − iIm(ĉP)

Re(ĉP) = cP0 + �0e · (ω21--
+ (A--

d--
)2)

−1
A--
d--
A--
e

Im(ĉP) = ω�0e · (ω21--
+ (A--

d--
)2)

−1
A--
e

(4.23)

The current entropy production�	 int(t) due to temporal changes
in the internal variables or rearrangements of the microstructure
can be calculated by Eq. (3.18) or with Eq. (3.26) by

��0	int = −∂g
∂ı

· ı̇ = ı̇ · (A−1ı̇). (4.24)

The total amount of entropy�Scycl generated during a temperature
cycle can be calculated by integration:

�0�Scycl = �0�

2�/ω∫
0

	int(t)dt =
2�/ω∫

0

ı̇(t) · A--
−1ı̇(t)dt (4.25)

The rate of the internal state variable vector can be determined, for
example, by solving Eq. (3.26) for a sinusoidal temperature pertur-
bation:

ϑ(t) = ϑ̂ sin(ωt) (4.26)

Inserting the ansatz for the internal state variable vector

ı-(t) = ı-1(ω) sin(ωt) + ı-2(ω) cos(ωt) (4.27)

into the evolution equation (3.26) leads to

(A--
d--
ı-2 +ωı-1) cos(ωt) = (ωı-2 − A--d--ı-1 − A--e-ϑ̂) sin(ωt). (4.28)

Since the coefficients of the sine and cosine functions have to van-
ish, two linear equations for ı-1 and ı-2 are obtained. Solving these
equations leads to

ı-1 = −A--d--(ω21--
+ (A--

d--
)2)

−1
A--
e-ϑ̂ and ı-2 = ω(ω21--

+ (A--
d--

)2)
−1
A--
e-ϑ̂

(4.29)

and finally to the stationary solution

ı-(t) = (ω1--
cos(ωt) − A--d-- sin(ωt))(ω21--

+ (A--
d--

)2)
−1
A--
e-ϑ̂ (4.30)

for internal variable vector. Differentiating Eq. (4.30) with respect
to time and application of the matrix-vector calculus leads to:

ı̇- · A--
−1ı̇- = ω2(ω2A--

−1 sin2(ωt) + 2ωd--
sin(ωt) cos(ωt)

+d--A--d-- cos2(ωt))x- · x- with x- = (ω21--
+ (A--

d--
)2)

−1
A--
e-ϑ̂

(4.31)

Carrying out the integration over one cycle and considering

2�/ω∫
0

sin2(ωt)dt=
2�/ω∫

0

cos2(ωt)dt=�
ω

and

2�/ω∫
0

sin(ωt) cos(ωt)dt = 0 (4.32)
we obtain from Eq. (4.25) together with Eq. (4.31):

�0�Scycl = �ω(ω2A--
−1 + d--A--d--)x- · x-

= �ωA--
−1(ω21--

+ (A--
d--

)2)x- · x- = �ϑ̂ωe- · x- (4.33)
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aking the definitions (4.31) of the auxiliary variable x- and (4.23)
f the split of ĉP(ω) into real and imaginary parts into account, we
btain the final result:

Scycl = � ϑ̂
2

�0
ωe- · (ω21--

+ (A--
d--

)2)
−1
A--
e- = � ϑ̂

2

�2
0

Im(ĉp) (4.34)

his simple expression relates the imaginary part of the complex
pecific heat to the produced entropy during a temperature cycle.
t is in accordance with the expression provided by ref. [12].

. Numerical simulations and discussion

In order to illustrate the properties of the constitutive theory,
e assume decoupled evolution equations for the internal state

ariables such that the matrices in the evolution equations and the
ibbs free energy are diagonal. To this end, the vectors e- and ı̂- and

he positive definite diagonal matrices A--
and d--

are represented as

A--
=

⎡
⎢⎣
A1

. . .
. . .

An

⎤
⎥⎦ , d--

=

⎡
⎢⎣
d1

. . .
. . .

dn

⎤
⎥⎦ ,

e- =

⎡
⎢⎣
e1
. . .
. . .
en

⎤
⎥⎦ and ı̂- =

⎡
⎢⎣
ı̂1
. . .
. . .

ı̂n

⎤
⎥⎦ . (5.1)

pplication of the matrix-vector calculus leads to the expressions

iω1--
+ A--d--)−1A--

e =

⎡
⎢⎢⎢⎢⎣

A1e1

iω + A1d1
. . .
. . .
Anen

iω + Andn

⎤
⎥⎥⎥⎥⎦ (5.2)

nd

· [(iω1--
+ A--d--)−1A--

e] =
n∑
k=1

Ake
2
k

iω + Akdk
. (5.3)

nserting Eq. (5.3) into Eq. (4.11) and splitting it into real and imag-
nary parts yields the expression

ˆP(ω) = cP0 + �0

n∑
k=1

Ake
2
k

iω + Akdk
= Re(ĉP) − iIm(ĉP) (5.4)

or the complex heat capacity with

e(ĉP) = cP0 + �0

n∑
k=1

e2
k
/dk

1 + (ω/Akdk)
2
, (5.5)

m
(
ĉP
)

= �0

n∑
k=1

(
ω/Akdk

)
e2
k
/dk

1 +
(
ω/Akdk

)2
. (5.6)

The real part of the complex heat capacity is a positive and
onotonically decreasing function of the angular frequencyω. The

maginary part is also positive but can have several maxima and
inima. The frequency-dependent contribution to the complex

eat capacity (5.4) has the same structure as the expression pro-

osed in refs. [7,8,29,30] and corresponds to a generalization of it.

The positive numbers �k = 1/Akdk in Eqs. (5.5) and (5.6) can
e interpreted as characteristic time scales of the corresponding
icromechanical processes which are represented by the internal

ariables. This interpretation becomes more clear if the complex
Fig. 1. Real and imaginary parts of the complex heat capacity.

amplitudes ı̂k(ω) of the micromechanical processes are calculated.
Using Eqs. (4.4), (4.5) and (5.2) we obtain

ı̂k(ω) = − Akek
iω + Akdk

ϑ̂ = |ı̂k|eiϕk (5.7)

with

|ı̂k| = |ek/dk|√
1 + (ω/Akdk)

2
|ϑ̂| and tan(ϕk) = −ω

Akdk
(5.8)

In the high-frequent case of ω/Akdk � 1 the amplitude of the
corresponding process vanishes and also its contribution to the
complex heat capacity (5.4). In the opposite or low-frequent case
of ω/Akdk 	 1 the micromechanical process is in phase with the
temperature excitation and, thus, contributes to the specific heat
capacity.

The frequency-dependent behaviour of the proposed model is
illustrated in the following three figures. To highlight the funda-
mental properties, we took the choice of four internal variables or
micromechanical mechanisms with a different and widely spread
dynamic behaviour. The material constants are given by the follow-
ing numerical values:

A1 = A2 = A3 = A4 = 1
kg

Js
, cP0 = 103 J

kgK
, s0 = 0, g0 = 0

d1 = 103 J

kg
, d2 = 101 J

kg
, d3 = 10−1 J

kg
, d4 = 10−3 J

kg

e1 = −103/2 J

kgK
, e2 = −101/2 J

kgK
, e3 = −10−1/2 J

kgK
,

e4 = −10−3/2 J

kgK

Fig. 1 visualizes both the monotonically decreasing behaviour of
the real part of the complex heat capacity and the maxima and min-
ima of the imaginary part. The material constants were chosen such
that the minima of the imaginary part of ĉP are located at angular
frequencies of about 10−3 rad/s, 10−1 rad/s, 101 rad/s and 103 rad/s.
This type of behaviour is in accordance with the experimental data

observed in refs. [1] and [19].

In Figs. 3 and 4 of [19] there are some indications that there
are possibly two mechanisms contributing to the complex specific
heat of glycerol. In Fig. 3 of [1], propylene glycol has been studied.
The transition region of the complex heat capacity from the low- to
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Fig. 2. Absolute values of the four internal variables.
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Fig. 3. Phase angles of the four internal variables.

he high-frequent level is about two or three decades. This broad
egion suggests that there are also several coexisting mechanisms
ontributing to the specific heat.

In Figs. 2 and 3, the amplitudes and phase angles of the internal
ariable amplitudes are plotted against the angular frequency. The
haracteristic transition frequency of each variable is given by the
roduct Akdk of its material parameters.

If the frequency of the temperature process is smaller than the
haracteristic frequency of the corresponding internal state vari-
ble, its amplitude has the maximum, is nearly constant and the
hase shift is zero. At essentially higher excitation frequencies, the
mplitudes of the internal variables tend asymptotically to zero and
he phase shifts to −�/2 i.e. the internal state variables are frozen.
omparing Figs. 1 and 2, we observe that at frequencies below
0−4 rad/s the specific heat has the highest values and is constant
ince all four internal variable amplitudes are constant and vary
n phase with the temperature. Between frequencies of 10−4 rad/s
nd 10−2 rad/s the real part of the heat capacity decreases because

he amplitude of the first internal state variable or micromechan-
cal process becomes essentially smaller. At about 10−2 rad/s the
pecific heat is constant again because the three other mechanisms
ave constant amplitudes and change in phase with the tempera-
ure process.
ca Acta 490 (2009) 64–74 73

6. Conclusions

To represent the frequency-dependent heat capacity which can
be measured by TMDSC, we developed a constitutive approach
which is based on thermodynamics with internal state variables.
Motivated by the external variables prescribed in differential scan-
ning calorimetry, the Gibbs free energy is chosen as appropriate
thermodynamic potential. Its canonical independent variables are
the stress tensor and the thermodynamic temperature. In order to
take the temperature-dependence of the materials’ microstructure
into account, a finite set of internal state variables is introduced
as additional arguments of the Gibbs free energy. The evolution
equations for these variables are formulated such that the whole
constitutive model is compatible with the second law of thermody-
namics in the form of the Clausius–Duhem inequality. To formulate
the constitutive model as general as possible, a Taylor approxi-
mation of the Gibbs free energy up to second order terms in the
temperature and the internal variables was applied. The developed
model is valid in a certain neighbourhood of the thermodynamic
state of equilibrium.

The substantial results of this paper are expressions in closed
form for both the dynamic calorimetric response and the complex
heat capacity. The frequency-dependent part of the complex heat
capacity is proportional to the transfer function of the internal state
variables. According to findings from literature, we have shown
that the imaginary part of the specific heat determines the entropy
which is produced by the changes in the internal variables during
one sinusoidal temperature cycle. The material parameters of the
model can be identified by fitting the real and imaginary parts of the
frequency-dependent heat capacity to experimental data. An inter-
esting property of our model is that the real part of the complex
heat capacity decreases with increasing temperature frequencies.
The imaginary part shows several maxima and minima.

From a physical point of view, the heat capacity is frequency-
dependent if the material under consideration exhibits reversible
temperature-induced changes in its microstructure. In the case
of temperature excitations with sufficient high frequencies, the
microstructure is frozen such that no additional energy is absorbed
or emitted by it when the temperature varies. In the opposite
case of sufficiently small temperature frequencies, the microstruc-
ture follows the dynamic temperature excitation without delay
and an additional amount of energy is absorbed or emitted in
order to realize the changes in the microstructure. In the case
of intermediate frequencies, the microstructure follows with a
frequency-dependent delay or phase shift. In this case, both the
imaginary part of the specific heat and the amount of entropy which
is generated during a temperature cycle have a local maximum.

The constitutive theory developed in this paper is in accordance
with experimental data of the complex heat capacity provided by
ref. [1] as well as by ref. [19]. Our theoretical results correspond to
a generalization of the fundamental formula for the complex heat
capacity derived in refs. [7,8,29].
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